Amend Education Academy 9999908238
Solved Assignment Algebric
expressions
Basic Algebra Formulas:
Algebra is
the part of mathematics which involves in manipulating equations or algebraic
expressionsA list of given basic algebra formulas can be used for the
application process, helps in understanding of the concept.
List of Algebraic Formulas :
The following are some of the important algebraic identities or expression used in class 8th and 9th maths
List of Algebraic Formulas :
The following are some of the important algebraic identities or expression used in class 8th and 9th maths
1. (a + b)2 = a2 + 2ab + b2
2. (a - b)2 = a2
- 2ab + b2
3. (a + b) (a - b)
= a2 - b2
4. (x + a)(x + b) = x2 +
(a + b)x + ab
5. (x + a)(x - b) = x2 + (a - b)x - ab
6. (x - a)(x + b) = x2 + (b - a)x - ab
7. (x - a)(x - b) = x2 - (a +
b)x + ab
8. (a + b)3 = a3 + b3
+ 3ab(a + b)
9. (a - b)3 = a3 - b3
- 3ab(a - b)
10. (x + y + z)2 = x2 + y2
+ z2 + 2xy + 2yz + 2xz
11. (x + y - z)2 = x2 + y2
+ z2 + 2xy - 2yz - 2xz
12. (x - y + z)2 = x2 + y2
+ z2 - 2xy - 2yz + 2xz
13. (x - y - z)2 = x2 + y2
+ z2 - 2xy + 2yz - 2xz
14. x3 + y3
+ z3 - 3xyz = (x + y + z)(x2 + y2 + z2
- xy - yz -xz)
15. x2 + y2 = 12 [(x + y)2 + (x - y)2]
15. x2 + y2 = 12 [(x + y)2 + (x - y)2]
16. (x + a) (x + b) (x + c) = x3 + (a +
b +c)x2 + (ab + bc + ca)x + abc
17. x3 + y3 = (x + y) (x2 -
xy + y2)
18.
x3 - y3 = (x - y) (x2 + xy +
y2)
19. x2 + y2 + z2 -xy - yz - zx = 12 [(x-y)2 + (y-z)2 + (z-x)2]
19. x2 + y2 + z2 -xy - yz - zx = 12 [(x-y)2 + (y-z)2 + (z-x)2]
Questions
1. Obtain the
volume of rectangular boxes with the following length, breadth and height
respectively.
(i) 5a, 3a2,
7a8 (ii) 2p,
4q, 8r (iii) xy, 2x2y, 2xy2(iv) a, 2b, 3c
2.
Multiply following
i) (2x + 5) and (4x – 3) (ii) (y – 8) and (3y – 4) (iii)
(1.5x – 4y)(1.5x + 4y + 3) – 4.5x + 12y
3. Use a suitable identity to get each of the
following products.
(i) (x + 3) (x + 3) (ii) (2y + 5) (2y + 5) (iii) (2a –
7) (2a – 7)
4. Using identities, evaluate.
(i) 71² (ii) 99² (iii) 1022
5. Using (x + a) (x + b) = x2+ (a + b) x +
ab, find
(i) 103 x 104
Factorization
1. Factorise
the following expressions.
(i) a² + 8a
+ 16 (ii) p² – 10 p + 25 (iii) 25m² + 30m + 9
2.
Factorise.
(i) 4p² –
9q² (ii) 63a² – 112b² (iii) 49x² – 36 (iv) 16x5 – 144x³ (v)
25a² – 4b² + 28bc – 49c²
3. Factorise
the following expressions.
(i) p² + 6p +
8 (ii) q² – 10q + 21 (iii) p² + 6p – 16
Answers
1: Volume = length x breadth x height
(i) 5a x 3a2
x 7a8 = 105a11
(ii) 2p x
4q x 8r = 64pqr
(iii) xy
x 2x2y x 2xy2 = 4x4y4
(iv) a x 2b x 3c = 6abc
2. 1. Multiply following
i) (2x + 5) and (4x – 3)
Answer: (2x + 5)(4x -
3)
= 2x x 4x - 2x x 3 + 5 x 4x - 5 x
3
= 8x² - 6x +
20x -15
= 8x² + 14x
-15
(ii) (y – 8) and (3y – 4)
Answer: ( y - 8)(3y - 4)
= y x 3y - 4y - 8 x 3y + 32
= 3y2
- 4y - 24y + 32
= 3y2
- 28y + 32
(iii) (1.5x –
4y)(1.5x + 4y + 3) – 4.5x + 12y
Answer: =
2.25x2 + 6xy + 4.5x - 6xy - 16y2 - 12y - 4.5x + 12y
= 2.25x2 - 16y2
3. Use a suitable
identity to get each of the following products.
(i) (x + 3) (x +
3)
Answer: Using (a + b)2 = a2 + 2ab +
b2 we get the following equation:
= x2 + 6x + 9
(ii) (2y + 5) (2y
+ 5)
Answer: 4y2 + 20y + 25
(iii) (2a – 7)
(2a – 7)
Answer: Using (a - b)2 = a2 - 2ab +
b2 we get the following equation:
= 4a2 - 28a + 49
4(i) 712
= (70+1)2
Using (a + b)2 = a2 + 2ab + b2
= 702 + 140 + 12
= 4900 + 140 +1= 5041
(ii) 99²
= (100 -1)2
= 1002 - 200 + 12
= 10000 - 200 + 1
= 9801
(iii) 1022
= (100 + 2)2
= 1002 + 400 + 22
= 10000 + 400 + 4
= 10404
5. (i) 103 x 104
= (100 + 3)(100 + 4)
= 1002 + (3 + 4)100 + 12
= 10000 + 1200 + 12
= 11212
Factorization
1. Factorise the following expressions.
(i) a² + 8a + 16

(ii) p² – 10 p + 25

(iii) 25m² + 30m + 9

2. Factorise.
(i) 4p² – 9q²

(ii) 63a² – 112b²

(iii) 49x² – 36

(iv) 16x5 – 144x³
Answer:16x5-144x3
=
x³(16x²-144)
=
x³(4x+12)(4x-12)
(v) 25a² – 4b² + 28bc – 49c²

3. Factorise the following expressions.
(i) p² + 6p + 8
Asnwer: p²+6p+8
=p(p+6)+8
(ii) q² – 10q + 21
Answer: q²-10q+21
=q(q-10)+21
(iii) p² + 6p – 16
Answer: p²+6p-16
=p(p+6)-1
No comments:
Post a Comment
AMend education academy B6 97 first floor sector 8 rohini